Electrostatic Levitation Furnace (ELF)

What's ELF

Measure thermophysical properties (density, surface tension, viscosity) of high-temperature melts which were hard to obtain with conventional methods.

- Melt material without container with heating laser. Use Coulomb force to control
- sample position.

Present work-

Obtained densities of molten zirconium, aluminum oxide and erbium oxides-calcium aluminate

Tamaru, H. et.al., : Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Sci. Technol. https://doi.org/10.1007/s12217-018-9631-8

Also under evaluating for viscosity and surface tension for aluminum oxide

Microgravity Effectiveness

Sample Types	Metals (elements)	Alloys	Oxides, semiconductors, etc.
Examples	W, Mo, Ta, Nb etc.	Materials in use Quasi-crystals, BMG. etc.	ZrO2,HfO2, ZrB2, CaF2 etc.
Levitation in 1G (Charging tendency)	easy/difficult	easy/difficult	difficult
Effectiveness micro-G	moderate	effective	effective
Note	Ground experiments are satisfactory for metal but micro-G data is useful as "Bench-mark" data.	Those materials are difficult to levitate on ground due to less electrostatic charge amount.	

Measured density vs temperature

Advantage of Levitation Furnace

ELF can process materials without container.

- There are no contamination from container.

Measurement of viscosity data has greatly changed the simulation results!

Electrostatic Levitation

ELF can obtain high temperature thermophysical properties.

- ELF can prevent heterogeneous nucleation from container.
- ELF can achieve super cooling.

Manufacturing heat-resistant turbine blades aimed at improving combustion efficiency.

Process optimization by casting simulation/ Reduce trial and error

Accurately acquire thermophysical property data of high melting point metal

Can not levitate

Realize materials with high industrial value by containerless and supercooled solidification

High-temperature thermophysical property acquisition data of metal element melts acquired by experimental equipment developed by JAXA

JAXA has measured high-temperature thermophysical data for many metal elements through research over 10 years. Published in the database, contributing to physical physics research and industry.

Creation of ferroelectric

30 times the dielectric constant → Ultra-small capacitor by TDK

Barium titanate Hexagonal (high temperature phase) single crystal

Creation of high refractive index glass (Maximum refractive index 2.4)

 \rightarrow High density DVD ball lens by Nippon Sheet Glass