Let us blow

Wrap-Up presentation Presenter : Sing-Lo、Su-Yi-Liu

Experiment in zero gravity

• The time spent for astronaut to move to the same position

Aperture/times	3cm	1cm	0.5cm
1	x	18sec	40sec
2	42sec	20sec	45sec

Speculated reasons

Laminar flow

- <u>Condition</u>:
- The pressure of the gas blown out by astronauts is consistent each time
- The flow velocity profile follows a parabolic distribution

The gas flow is fastest at the center of the pipe(r=0)

The gas flow is zero at the pipe walls(r=R)

The influence of the friction

Experiment on earth (replace air with water)

- The experiment results of using water instead of air on Earth are similar to those in zero gravity.
- From the picture, we can see that the horizontal range of water output from a small aperture is shorter than that of a large aperture
- It can be inferred that under consideration of friction, the smallest diameter pipe does not output maximum kinetic energy.

Conclusion

When the pipe aperture is extremely small, friction has a significant impact on gas flow rate and the final output of kinetic energy.

Based on the laminar flow phenomenon and the friction, we can conclude that there is a perfect aperture **between 5 mm and 3 cm** for the maximum gas flow rate and the maximum final output of kinetic energy.

The laminar flow phenomenon still holds under zero gravity.

2

Find a perfect aperture **between 5 mm and 3 cm** for the maximum gas flow rate and the maximum final output of kinetic energy.

Observe the influence of **different materials** on the final output kinetic energy and flow rate for the same aperture.

Thank you